# Sterowanie serwonapędem ASTRAADA SRV ze sterownika ASTRAADA One za pośrednictwem sieci EtherCAT

(bez użycia licencji SoftMotion)

Zrzuty ekranu występujące w tej dokumentacji pochodzą z oprogramowania CODESYS w wersji 3.5 SP8 Patch 4.

## Spis treści

| Bezpieczeństwo pracy z serwonapędem                                                                                 | 2  |
|---------------------------------------------------------------------------------------------------------------------|----|
| Przygotowanie serwonapędu ASTRAADA SRV do komunikacji w protokole EtherCAT                                          | 3  |
| Konfigurowanie w oprogramowaniu CodeSYS komunikacji EtherCAT sterownika ASTRAADA One z<br>serwonapędem ASTRAADA SRV | 4  |
| Dodawanie parametrów do domyślnej listy danych wymienianych pomiędzy sterownikiem a<br>serwonapędem                 | 13 |
| Adresowanie danych w protokole EtherCAT                                                                             | 16 |
| Dystrybucja zegara Network Clock Synchronization                                                                    | 16 |
| Status urządzenia (serwonapędu) zgodny ze standardem CiA DS402 oraz wysyłanie poleceń<br>sterujących                | 16 |
| Status serwonapędu dostępny za pośrednictwem sieci EtherCAT                                                         | 17 |
| Opis słowa kontrolnego (0x6040)                                                                                     | 19 |
| Praca w trybie sterowania pozycją                                                                                   | 21 |
| Praca w trybie sterowania prędkością                                                                                | 26 |
| Kalibrowanie serwonapędu (Homing)                                                                                   | 28 |
| Wyświetlenie wizualizacji w oknie przeglądarki                                                                      | 33 |
| Wybrane kody błędów EtherCAT                                                                                        | 34 |
| Co sprawdzić, gdy serwonapęd nie działa                                                                             | 35 |



## **BEZPIECZEŃSTWO PRACY Z SERWONAPĘDEM**

Podczas pracy z serwonapędem należy pamiętać o następujących zagrożeniach:

- Zagrożenie porażenia prądem elektrycznym,
- Zagrożenie uszkodzeniami mechanicznymi ludzi i maszyn.

Nawet po wyłączeniu zasilania należy odczekać 10 minut przed dotknięciem lub rozłączaniem okablowania! Ten czas jest niezbędny na rozładowanie wewnętrznych kondensatorów w serwonapędzie.

Nie dotykać ruchomych części serwonapędów i połączonych z nim mechanizmów!

Przed uruchomieniem serwonapędów upewnić się, że maszyna nie będzie zagrażać obsłudze i nie spowoduje uszkodzenia części mechanicznych! W miarę możliwości, zaleca się przeprowadzanie testów przy wysprzęglonych serwonapędach.



## PRZYGOTOWANIE SERWONAPĘDU ASTRAADA SRV DO KOMUNIKACJI W PROTOKOLE ETHERCAT

Przed przystąpieniem do konfigurowania serwonapędu zaleca się przywrócenie jego ustawień fabrycznych. Jest to realizowane poprzez wpisanie wartości 1 do rejestru **P4.92** i ponowne załączenie zasilania.

Serwonapęd ASTRAADA SRV domyślnie nie jest skonfigurowany do komunikacji za pośrednictwem sieci EtherCAT. Należy więc uaktywnić w nim opcję komunikacji w tym protokole. W tym celu:

> 1. Ustaw tryb pracy serwonapędu na sterowanie za pomocą sieci

i ży cji 1

EtherCAT. W tym celu do parametru **P0.03** wpisz wartość **8**. Po zmianie tego parametru wyłącz i załącz zasilanie wzmacniacza.

- 2. Ustaw typ synchronizacji za pomocą sieci EtherCAT w parametrze P4.08 na:
  - a. **0** (Free-Run, tj. praca bez synchronizacji)
  - b. lub **1** (DC Sync0, czyli praca z synchronizacją lokalnych zegarów poszczególnych urządzeń podrzędnych)
- 3. Skonfiguruj okres synchronizacji EtherCAT, tj. czas wymiany danych z użyciem tej sieci. W tym celu wpisz odpowiednią wartość do parametru **P4.07**:
  - a. Wartość **0** oznacza 250us
  - b. Wartość 1 oznacza 500us
  - c. Wartość 2 oznacza 1ms
  - d. Wartość 3 oznacza 2ms
- 4. W parametrze **P4.09** ustaw czas Fault Detection Time, tzn. czas timeout, dla komunikacji EtherCAT (np. wpisz **100** ms). Posłuży on do wykrywania faktu utraty komunikacji na tej sieci.

Proszę upewnić się, że w parametrze **P0.00** został skonfigurowany model silnika, jaki rzeczywiście jest dołączony do wzmacniacza. Przykładowo, w przypadku serwonapędu o mocy 200W z silnikiem wyposażonym w enkoder absolutny jest to model 2200, w przypadku mocy 400W jest to model 2300. Dla silników enkoderem inkrementalnym są to kody 220 oraz 230. Numer modelu silnika nadrukowany jest na silniku. Po zmianie modelu silnika wymagane jest wyłączenie i załączenie zasilania wzmacniacza.

Sterownik ASTRAADA ONE musi być połączony ze wzmacniaczem serwonapędu ASTRAADA SRV przy użyciu <u>pierwszego (tj. górnego)</u> portu EtherCAT w tym wzmacniaczu - gniazdo CN3.



## KONFIGUROWANIE W OPROGRAMOWANIU CODESYS KOMUNIKACJI ETHERCAT STEROWNIKA ASTRAADA ONE Z SERWONAPĘDEM ASTRAADA SRV

W tym rozdziale zamieszczony jest opis zakładania projektu w środowisku CodeSYS na sterownik ASTRAADA One oraz konfigurowanie połączenia EtherCAT z serwonapędem ASTRAADA SRV.

1. W środowisku CodeSYS załóż nowy projekt. W niniejszym przykładzie jako sterownik wybrany został model kompaktowy.

| Standard Pr | oject                                                                                                   | 8                                                                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | You are about<br>objects within<br>- One program<br>- A program P<br>- A cyclic task<br>- A reference t | to create a new standard project. This wizard will create the following<br>this project:<br>mable device as specified below<br>LC_PRG in the language specified below<br>which calls PLC_PRG<br>o the newest version of the Standard library currently installed. |
|             | Device:                                                                                                 | Berghof MX6 Control (Berghof Automation GmbH)                                                                                                                                                                                                                     |
|             | PLC_PRG in:                                                                                             | Ladder Logic Diagram (LD)                                                                                                                                                                                                                                         |
|             |                                                                                                         |                                                                                                                                                                                                                                                                   |
|             |                                                                                                         | OK Cancel                                                                                                                                                                                                                                                         |

 Jeżeli masz już zainstalowane biblioteki do obsługi serwonapędów ASTRAADA SRV, przejdź do punktu 6. Natomiast, jeżeli wcześniej nie konfigurowałeś jeszcze serwonapędów ASTRAADA SRV w swoim środowisku CodeSYS, musisz dodać biblioteki dla obsługi tych serwonapędów. Wybierz w tym celu polecenie Tools | Device Repository...





3. Wciśnij przycisk Install.

| 😹 Device Re                                                 | pository                                                                      |                |         |      |   | <b>—</b>                            |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|---------|------|---|-------------------------------------|
| Location:                                                   | System Repository<br>(C:\ProgramData\                                         | ,<br>CODESYS\D | evices) | <br> | • | Edit Locations                      |
| Installed d<br>Name<br>⊕- ∰ M<br>⊕- ∰ F<br>⊕- ∰ P<br>⊕- Ø S | evice descriptions:<br>liscellaneous<br>ieldbusses<br>LCs<br>oftMotion drives | Vendor         | Version |      |   | Install<br>Uninstall<br>Install DTM |
|                                                             |                                                                               |                |         |      |   | Details                             |
|                                                             |                                                                               |                |         |      |   | Close                               |

- 4. Ze strony Pomocy Technicznej ASTOR pobierz bibliotekę do obsługi serwonapędów ASTRAADA SRV. Wskaż lokalizację pobranego pliku (np. Astraada\_SRV\_CoE\_V106.xml).
- 5. Sprawdź komunikat oprogramowania i upewnij się, że biblioteka została prawidłowo zainstalowana.
- 🜋 Device Repository

| .ocation                           | System Repositor        | y           |              |                                      | ~ | Edit Locations |
|------------------------------------|-------------------------|-------------|--------------|--------------------------------------|---|----------------|
|                                    | (C:\ProgramData         | CODESYS\D   | evices)      |                                      |   |                |
| installed D                        | evice Descriptions      |             |              |                                      |   |                |
| String for                         | a full text search      |             | Vendor       | <all vendors=""></all>               | / | Install        |
| Name                               |                         | Vendor      | Version      | Description                          |   | Uninstall      |
| н<br>М                             | liscellaneous           |             |              |                                      |   | Export         |
| н (Ш) Fi<br>(Э) ( <mark>Э</mark> Н | ieldbuses<br>MI devices |             |              |                                      |   |                |
| 🗷 🔐 Pl                             | LCs                     |             |              |                                      |   |                |
| 🗄 - 🔗 S                            | oftMotion drives        |             |              |                                      |   |                |
|                                    | :\Users\MATEUSZST       | Desktop Ast | raada_AS64_I | EtherCAT_101.xml                     |   |                |
| I (                                | Device "Astraada        | _SRV_64_Eth | erCAT(CoE) D | rive" installed to device repository |   |                |
|                                    |                         |             |              |                                      |   |                |
|                                    |                         |             |              |                                      |   | Details        |
|                                    |                         |             |              |                                      |   |                |
|                                    |                         |             |              |                                      |   | Close          |
|                                    |                         |             |              |                                      |   | ciuse          |

 $\times$ 



6. W celu uaktywnienia w sterowniku ASTRAADA One obsługi protokołu EtherCAT kliknij prawym klawiszem myszy na Device i wybierz polecenie Add Device...





Następnie w polu Vendor wybierz <All vendors> i wybierz z listy EtherCAT Master. Zatwierdź wybór przyciskiem Add Device.

| Add Device                          |                                           |                     | -     |
|-------------------------------------|-------------------------------------------|---------------------|-------|
| Name: EtherCAT_Master               |                                           |                     |       |
| Action:                             |                                           |                     |       |
| Append device In:                   | sert device 💿 Plug device 🌀 Update        | device              |       |
| Device:                             |                                           |                     |       |
| Vendor:                             |                                           |                     |       |
| Call Vendors 2                      |                                           |                     | •     |
| Name                                | Vendor                                    | Version             |       |
| Miscellaneous                       |                                           |                     |       |
| Fieldbusses                         |                                           |                     |       |
| E CANDUS                            |                                           |                     |       |
|                                     |                                           |                     |       |
| Ether                               | CAT Master 35 - Smart Software Solu       | itions GmbH 3.5.5.0 |       |
| Ethernet Ada                        | pter                                      |                     |       |
| EtherNet/IP                         |                                           |                     |       |
|                                     |                                           |                     |       |
| 🗄 🛲 Profibus                        |                                           |                     |       |
| 🗉 🛲 Profinet IO                     |                                           |                     |       |
| 🖻 S sercos                          |                                           |                     |       |
|                                     |                                           |                     |       |
|                                     |                                           |                     |       |
| Group by category                   |                                           |                     |       |
| Display all versions (fr            | r experts only)                           |                     |       |
| Display outdated yers               | ions                                      |                     |       |
|                                     | ions                                      |                     |       |
| Information:                        |                                           |                     |       |
| Name: EtherCAT N                    | aster                                     |                     |       |
| Groups: Master                      | I Software Solutions GmbH                 |                     |       |
| Version: 3.5.5.0<br>Model Number: 2 | 22                                        | 2                   |       |
| Description: Ethe                   | rCAT Master                               |                     |       |
|                                     |                                           |                     |       |
|                                     |                                           |                     |       |
|                                     |                                           |                     |       |
|                                     | - 1 - 1 - 1 - 1 - 1                       |                     |       |
| Append selected device<br>Device    | as last child of                          |                     |       |
|                                     |                                           |                     |       |
| A (You can callect and              | her target node in the navigator while th | is window is open ) |       |
| (You can select anot                | her target node in the navigator while th | is window is open.) |       |
| (You can select anot                | her target node in the navigator while th | Add Device          | Close |



 Bez zamykania poprzedniego okna kliknij na składniku EtherCAT\_Master (EtherCAT Master) i przyciskiem Add Device dodaj z listy urządzenie podrzędne Astraada\_SRV\_64. Zamknij okno z listą urządzeń.

| ) Add    | d Device                                        |                            |                          |               |             | >         |
|----------|-------------------------------------------------|----------------------------|--------------------------|---------------|-------------|-----------|
| lame     | Astraada_AS64                                   |                            |                          |               |             |           |
| Action   | 1                                               |                            |                          |               |             |           |
| Ap       | opend device 🔿 Insert device 🔿 Plug d           | levice Ol                  | Jpdate device            |               |             |           |
| String   | for a full text search                          | Vendor                     | Astraada                 |               |             | ~         |
| Nam      | ne                                              |                            |                          | Vendor        | Version     |           |
| <b>.</b> | Fieldbuses                                      |                            |                          |               |             |           |
| E        | Brown Ethercat                                  |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          | Astradda                                        |                            |                          |               |             |           |
|          | Astraada_SRV_63(8B                              | it Asyn DSP                | ET1100)                  | Astraada      | Revision=16 | #00000000 |
|          | Astraada_SRV_64_Et                              | herCAT(CoE                 | ) Drive                  | Astraada      | Revision=16 | #0000064  |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
| <        |                                                 |                            |                          |               |             | >         |
| ⊿ Gro    | pup by category Display all versions (f         | or experts o               | only) 🗌 Disi             | olav outdated | versions    |           |
|          |                                                 |                            |                          |               |             |           |
|          | Vendor: Astraada_SRV_64_EtherCAT(COE)           | Drive                      |                          |               |             |           |
|          | Categories:<br>Version: Revision = 16 #00000064 |                            |                          |               | <           |           |
|          | Order Number: Astraada_AS64                     | -1                         |                          |               |             |           |
|          | EtherCAT 101.xml Device: Astraada SRV           | om Slave XM<br>/ 64 EtherC | L: Astraada_A<br>AT(CoE) | 564           | -           | <b></b>   |
|          | DriveAstraada_SRV_64_EtherCAT(CoE) Dr           | ive                        |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          |               |             |           |
| Appe     | nd selected device as last child of             |                            |                          |               |             |           |
| o<br>0   | (You can select another target node in the      | navigator v                | hile this wind           | ow is open.)  |             |           |
|          |                                                 |                            |                          |               |             |           |
|          |                                                 |                            |                          | Add D         | Device      | Close     |



 W celu nawiązania komunikacji oprogramowania CodeSYS ze sterownikiem ASTRAADA One dwukrotnie kliknij na Device i wciśnij przycisk Scan network... Oczywiście wcześniej sterownik musi zostać połączony z komputerem, z którego odbywa się programowanie. Domyślny adres IP sterownika ASTRAADA One to: 169.254.255.xx, gdzie xx to ostatnie dwie cyfry numeru seryjnego sterownika.

| Device X               |              |          |     |              |           |                  |                                                 |                 |          |
|------------------------|--------------|----------|-----|--------------|-----------|------------------|-------------------------------------------------|-----------------|----------|
| Communication Settings | Applications | Files    | Log | PLC settings | PLC shell | Users and Groups | Access Rights                                   | Task deployment | Status 🌒 |
| Scan network Gate      | way 👻 Devi   | te 🔻     |     |              |           |                  |                                                 |                 |          |
|                        |              |          |     |              |           |                  |                                                 |                 |          |
|                        | 1            |          | •   |              |           |                  |                                                 |                 |          |
|                        | <u> </u>     |          |     | ***          |           |                  |                                                 |                 |          |
| •                      |              |          | -   |              |           |                  | •                                               |                 |          |
|                        |              |          | G   | ateway       |           |                  |                                                 |                 |          |
|                        | Gat          | eway-1   |     |              | Ŧ         | WWWIN7           |                                                 | T               |          |
| Select Device          |              |          |     |              |           |                  |                                                 |                 |          |
| Select Device          |              |          |     |              |           |                  |                                                 |                 |          |
| Select the network p   | (scanning)   | troller: |     |              |           | D                | evice Name:                                     | Scan ne         | twork    |
| BGH-II                 | MX6 [0032]   |          |     |              |           | BC               | GH-IMX6                                         | Ma              |          |
|                        |              |          |     |              |           | D 00             | evice Address:<br>032                           | VII             | 1K       |
|                        |              |          |     |              |           | Т                | arget Version:                                  |                 |          |
|                        |              |          |     |              |           | 1.               | 7.1.0                                           |                 |          |
|                        |              |          |     |              |           | Ta<br>Be<br>Gr   | <b>arget Vendor:</b><br>erghof Automatio<br>mbH | n               |          |
|                        |              |          |     |              |           | Т                | arget ID:                                       |                 |          |
|                        |              |          |     |              |           | 10               | 059 0003                                        |                 |          |
|                        |              |          |     |              |           | T:<br>EC         | arget Name:<br>CC2250 0.8S 113                  | 1               |          |
| i i                    |              |          |     |              |           | Ta<br>40         | arget Type:<br>196                              |                 |          |
| r                      |              |          |     |              |           |                  |                                                 |                 |          |
|                        |              |          |     |              |           |                  |                                                 |                 |          |
|                        |              |          |     |              |           |                  | _                                               |                 |          |
|                        |              |          |     |              |           |                  |                                                 | ок              | Cancel   |

9. Z listy sterowników wybierz właściwy i zatwierdź przyciskiem OK. Po udanym nawiązaniu komunikacji ze sterownikiem, jako potwierdzenie sukcesu tej operacji, zmieni się kolor kropki przy sterowniku z czarnego na zielony.

| Device X                     |         |         |     |              |           |                  |                    |                |
|------------------------------|---------|---------|-----|--------------|-----------|------------------|--------------------|----------------|
| Communication Settings Appli | cations | Files   | Log | PLC settings | PLC shell | Users and Groups | Access Rights      | Task deploymen |
| Scan network   Gateway 🔻     | Devic   | e 🔻     |     |              |           |                  |                    |                |
|                              |         |         |     |              |           |                  |                    |                |
|                              |         |         |     |              |           |                  |                    |                |
|                              |         |         | •   |              |           |                  |                    |                |
|                              |         |         | - 2 |              |           |                  |                    |                |
|                              |         |         |     |              |           |                  | •                  |                |
|                              |         |         | G   | ateway       |           | _                |                    |                |
|                              | Gate    | wav-1   |     |              | •         | [0032] (active   | :)                 | •              |
|                              | TP-A    | Idress: |     |              |           | Device Name      |                    |                |
|                              | local   | host    |     |              |           | BGH-IMX6         |                    |                |
|                              | Port:   |         |     |              |           | Device Addre     | ss:                |                |
|                              | 1217    |         |     |              |           | 0032             |                    |                |
|                              |         |         |     |              |           | Target ID:       |                    |                |
|                              |         |         |     |              |           | 1059 0003        |                    |                |
|                              |         |         |     |              |           | Target Type:     |                    |                |
|                              |         |         |     |              |           | 4096             |                    |                |
|                              |         |         |     |              |           | Target Vendo     | r:<br>making Carbo |                |
|                              |         |         |     |              |           | Dergnor Auto     | mation GMDH        |                |
|                              |         |         |     |              |           | Target Versio    | n:                 |                |

10. Zdefiniuj, który port w sterowniku będzie pracował w roli urządzenia Master na sieci EtherCAT. W tym celu dwukrotnie kliknij na składniku EtherCAT Master. W sterowniku, który został użyty w tym ćwiczeniu, port eth1 może być użyty jako Master w sieci EtherCAT, dlatego w oknie wyboru portu (Select Network Adapter) wybierz port o nazwie eth1. Wciśnij przycisk Browse i wybierz odpowiedni port.

| Dev        | ice 📝 🗃 Ether      | CAT_Master 🗙        |             |                   |  |  |  |  |  |  |  |  |  |
|------------|--------------------|---------------------|-------------|-------------------|--|--|--|--|--|--|--|--|--|
| Master 📮   | EtherCAT I/O Map   | ping Status 🌗 Infor | mation      |                   |  |  |  |  |  |  |  |  |  |
| 🔽 Aut      |                    |                     |             |                   |  |  |  |  |  |  |  |  |  |
| EtherCAT   | NIC Setting        |                     |             |                   |  |  |  |  |  |  |  |  |  |
| Destina    | tion Address (MAC) | FF-FF-FF-FF-FF      | 🔽 Broadcast | Enable Redundancy |  |  |  |  |  |  |  |  |  |
| Source     | Address (MAC)      | 00-00-00-00-00      | Browse      |                   |  |  |  |  |  |  |  |  |  |
| Networ     | k Name             |                     |             |                   |  |  |  |  |  |  |  |  |  |
| Sele       | ect network by MAC | Select netwo        | ork by Name |                   |  |  |  |  |  |  |  |  |  |
| L          |                    |                     |             |                   |  |  |  |  |  |  |  |  |  |
| Distribute | d.Clock            | Ontions             |             |                   |  |  |  |  |  |  |  |  |  |
| Cycletin   | Select Network A   | dapter              |             |                   |  |  |  |  |  |  |  |  |  |
| Sync Off   | 16004CB8FE32       |                     |             |                   |  |  |  |  |  |  |  |  |  |
| 📃 Sync     | 00E0BA9503BC       |                     |             |                   |  |  |  |  |  |  |  |  |  |
| Sync wir   |                    |                     |             |                   |  |  |  |  |  |  |  |  |  |
|            |                    |                     |             |                   |  |  |  |  |  |  |  |  |  |
|            | name:              | eth1                |             |                   |  |  |  |  |  |  |  |  |  |
|            |                    |                     |             |                   |  |  |  |  |  |  |  |  |  |
|            | description:       |                     |             |                   |  |  |  |  |  |  |  |  |  |
|            |                    |                     | ОК          | Abort             |  |  |  |  |  |  |  |  |  |



11. W efekcie, w polu Source Address (MAC) zostanie wyświetlony adres MAC wybranego portu komunikacyjnego sterownika ASTRAADA One. Zaznacz opcję Auto restart slaves – wtedy sterownik samoczynnie będzie ponawiał próby komunikacji z serwonapędem w przypadku chwilowego niepowodzenia (np. rozłączenia na moment kabla komunikacyjnego EtherCAT).

| Device Ethe                            | CAT_Maste   | er X           |                  |                   |  |  |  |  |
|----------------------------------------|-------------|----------------|------------------|-------------------|--|--|--|--|
| Master 🗮 EtherCAT I/O Mag              | ping Status | s 🕕 Informa    | tion             |                   |  |  |  |  |
| ✓ AutoconfigMaster/Slaves     EtherCAT |             |                |                  |                   |  |  |  |  |
| EtherCAT NIC Setting                   |             |                |                  |                   |  |  |  |  |
| Destination Address (MAC               | FF-FF-FF-F  | F-FF-FF        | 🔽 Broadcast      | Enable Redundancy |  |  |  |  |
| Source Address (MAC)                   | 00-E0-BA-9  | 95-03-BD       | Browse           |                   |  |  |  |  |
| Network Name                           | eth1        |                |                  |                   |  |  |  |  |
| Select network by MAC                  | 0           | Select network | by Name          |                   |  |  |  |  |
| Distributed Clock                      |             | Options        |                  |                   |  |  |  |  |
| Cycletime 4000                         | ÷ µs        | 📃 Use LR       | W instead of LWF | t/LRD             |  |  |  |  |
| Sync Offset 20                         | \$ %        | Enable         | messages pertas  | k                 |  |  |  |  |
| Sync Window Monitoring                 | ,           | 🔽 Auto re      | start slaves     |                   |  |  |  |  |
| Sync window 1                          | ÷ µs        |                |                  |                   |  |  |  |  |
|                                        |             |                |                  |                   |  |  |  |  |

12. Przejdź do konfigurowania urządzenia podrzędnego, tj. kliknij dwukrotnie na składniku Astraada\_SRV\_64. Następnie zaznacz opcję Enable Expert Settings i odznacz Check Product ID. W przypadku korzystania z innego sterownika firmy Astraada np. EC2000 + Extender, w każdym dodanym urządzeniu podrzędnym do drzewka należy odznaczyć tę opcję).

| Visualization               | Device 🔐 EtherCAT_Master 🕸 PLC_PRG 🔐 Astraada_SRV_63 🗙                           |
|-----------------------------|----------------------------------------------------------------------------------|
| Slave Expert Process Data P | rocess Data 🛛 Startup parameters 🛛 🗮 EtherCAT I/O Mapping 🛛 Status 🚺 Information |
| Address                     | Additional                                                                       |
| AutoInc Address: 0          | EtherCAT                                                                         |
| EtherCAT Address: 100       | 1 Optional                                                                       |
| Distributed Clock           |                                                                                  |
| Select DC: DC f             | or synchronization 🔻                                                             |
| venable 4000                | Sync Unit Cycle (µs)                                                             |
| Sync0:                      |                                                                                  |
| V Enable Sync 0             |                                                                                  |
| Sync Unit Cycle x 1         |                                                                                  |
| 🔘 User Defined              | 0 Shift Time (µs)                                                                |
| Sync1:                      |                                                                                  |
| Enable Sync 1               |                                                                                  |
| Sync Unit Cycle x 1         | - 4000 (μs)                                                                      |
| 🔘 User Defined              | 0 🖾 Shift Time (µs)                                                              |
| Startup checking            | Timeouts                                                                         |
| Check Vendor ID             | SDO Access 2000 💼 ms                                                             |
| Check Product ID            | I -> P 3000 ms                                                                   |
| Check Revision Number       | P -> S / S -> 0 10000 ms                                                         |



13. Po dołączeniu obu urządzeń do sieci EtherCAT, zaprogramowaniu sterownika oraz uruchomieniu programu i po skonfigurowaniu serwonapędu do komunikacji w sieci EtherCAT, sprawdź status komunikacji EtherCAT. Poprawna komunikacja z serwonapędem za pośrednictwem sieci EtherCAT będzie sygnalizowana następującymi ikonami:



Teraz możesz przystąpić do wykonania ruchów testowych oraz pisania programu sterującego pracą serwonapędu.

Nie zapomnij załączyć śledzenia zmiennych nieużywanych w programie, jeżeli zamierzasz przeprowadzić testy serwonapędu, zanim zostanie napisany program sterujący z ich użyciem.

Opcja tę można znaleźć w prawym dolnym rogu okna po otwarciu składnika Astraada\_SRV\_64, w zakładce EtherCAT I/O Mapping.



## DODAWANIE PARAMETRÓW DO DOMYŚLNEJ LISTY DANYCH WYMIENIANYCH POMIĘDZY STEROWNIKIEM A SERWONAPĘDEM

Biblioteka serwonapędu została dostarczona w takiej formie, że pewne parametry znajdują się domyślnie na liście danych, jakie będą wymieniane pomiędzy sterownikiem a serwonapędem. Jednak okazać się może, że na liście tej nie ma wszystkich parametrów, jakie potrzebuje użyć programista.

| General              | Find               |         | Filter Show all        |         |       | - 🕂 Add FB f  | or IO Cł | hannel → Go to Insta   |
|----------------------|--------------------|---------|------------------------|---------|-------|---------------|----------|------------------------|
| Process Data         | Variable           | Mapping | Channel                | Address | Туре  | Default Value | Unit     | Description            |
| Process Data         |                    |         | Control Word           | %QW0    | UINT  |               |          | Control Word           |
| tartup Parameters    | 😟 - Ko             |         | Target Position        | %QD1    | DINT  |               |          | Target Position        |
|                      |                    |         | Target Velocity        | %QD2    | DINT  |               |          | Target Velocity        |
| og                   | 😟 - <b>*</b> ø     |         | Mode of Operation      | %QB12   | SINT  |               |          | Mode of Operation      |
|                      | <b>*</b>           |         | Target torque          | %QW7    | INT   |               |          | Target torque          |
| therCAT I/O Mapping. | 🗎 - <sup>K</sup> ø |         | Touch probe control    | %QW8    | UINT  |               |          | Touch probe control    |
|                      |                    |         | Positive torque limit  | %QW9    | UINT  |               |          | Positive torque limit  |
| therCAT IEC Objects  | 🖷 - <b>*</b> ø     |         | Negtive torque limit   | %QW10   | UINT  |               |          | Negtive torque limit   |
| Yatus                | i                  |         | Max profile velocity   | %QD6    | UDINT |               |          | Max profile velocity   |
| status               | 🖷 - 鞭              |         | Status Word            | %IW0    | UINT  |               |          | Status Word            |
| nformation           | 🚊 🦄                |         | Position Actual Value  | %ID1    | DINT  |               |          | Position Actual Value  |
|                      | 🖷 - 🍬              |         | Speed Actual Value     | %ID2    | DINT  |               |          | Speed Actual Value     |
|                      | 🗄 🍫                |         | Torque Actual Value    | %IW6    | INT   |               |          | Torque Actual Value    |
|                      | 😟 - 🦄              |         | Operation Mode Display | %IB14   | SINT  |               |          | Operation Mode Display |
|                      | 🚊 🧤                |         | Current Actual Value   | %IW8    | INT   |               |          | Current Actual Value   |
|                      | 🗎 - 🍫              |         | Touch Probe Status     | %IW9    | UINT  |               |          | Touch Probe Status     |
|                      | 😟 🦄                |         | Touch Probe Value      | %ID5    | DINT  |               |          | Touch Probe Value      |
|                      | 🗎 - 🍫              |         | Digital outputs        | %ID6    | UDINT |               |          | Digital outputs        |
|                      | 😟 🦄                |         | Digital inputs         | %ID7    | UDINT |               |          | Digital inputs         |

Domyślna lista parametrów wygląda następująco:

Należy mieć na uwadze, że ilość parametrów wymienianych z serwonapędem jest ograniczona i pozwala na dodanie jednego parametru wyjściowego (do zapisu w serwonapędzie). Dlatego należy rozważyć, które parametry będą niezbędne do używania w danej aplikacji i ewentualnie usunąć z listy parametry zbędne. Z reguły do listy trzeba dodać ograniczenie momentu siły (Max Torque), a usunąć można zatrzaskiwanie pozycji (Touch Probe Function).

Aby dodać parametr do tej listy, należy:

1. Upewnić się, że oprogramowanie CodeSYS nie jest w trakcie komunikowania się ze sterownikiem ASTRAADA One lub rozłączyć komunikację ze sterownikiem za pomocą przycisku Logout:

| <u>F</u> ile | <u>E</u> dit | <u>V</u> iew | Project | Visualization | <u>B</u> uild      | <u>O</u> nline | <u>D</u> ebug | <u>T</u> ools | <u>W</u> indow | Help |                               |
|--------------|--------------|--------------|---------|---------------|--------------------|----------------|---------------|---------------|----------------|------|-------------------------------|
| 1            | 2 🖬          | 6            | 0 0     | X 🖻 🖻         | $\times 10$        | 🖌 🕼 I          | ₿ 箍           | - D           | 🎬   🍳          | C₿   | ▶ ■   [= 9] 4] 4] 4] 4] 4] 4] |
|              |              |              | [명 명    |               | 1   <del>D</del> † | 후 🏨            |               |               |                | 8 8↓ | 許 화   忌 ⑪ 昭 德   ⑮ 匝 됴 ┗   隱 隧 |



 Dwukrotnie kliknąć w komponent "Astraada\_AS64", a w oknie właściwości tego urządzenia przejść na zakładkę "Expert Process data". W polu PDO List (Process Data Objects) należy kliknąć lewym przyciskiem myszy w index 16#1600 (DO Outputs). Umożliwi to dodanie nowej zmiennej w polu PDO Content.

Następnie w polu PDO Content należy kliknąć lewym przyciskiem myszy na ikonę "Insert", co spowoduje otwarcie nowego okna, gdzie można dodać nową zmienną.

|                    |           | 🕂 Add 📝 Edit 🗙 Delete     |          |        |      |                      |       |       |  |  |  |
|--------------------|-----------|---------------------------|----------|--------|------|----------------------|-------|-------|--|--|--|
| SM Size Ty         | pe .      | PDO List:                 |          |        |      |                      |       |       |  |  |  |
| 0 0 Ma             | ilbox Out | Index                     | Size     | Nam    | e    |                      | Flags | SM    |  |  |  |
| 1 0 Ma             | ilbox In  | 16#1600 21.0 DO Outputs 2 |          |        |      |                      |       |       |  |  |  |
| 2 21 Out           | :puts     | 16#1A00                   | 32.0     | DI Inp | outs |                      |       | 3     |  |  |  |
| 3 32 Inp           | uts       |                           |          |        |      |                      |       |       |  |  |  |
| PDO Assignment (16 | #1C12):   | 🕂 Insert 🚺                | Edit 🗙 I | Delete | 會 Mo | ve Up 🗣 Move Down    |       |       |  |  |  |
| ✔ 16#1600          | ų         | ree content               | (16#1600 | ):     |      |                      |       |       |  |  |  |
|                    |           | Index Inse                | ert      | Size   | Offs | Name                 |       | Туре  |  |  |  |
|                    |           | 16#6040:0                 | 00       | 2.0    | 0.0  | Control Word         |       | UINT  |  |  |  |
|                    |           | 16#607A:                  | 00       | 4.0    | 2.0  | Target Position      |       | DINT  |  |  |  |
|                    |           | 16#60FF:(                 | 00       | 4.0    | 6.0  | Target Velocity      |       | DINT  |  |  |  |
|                    |           | 16#6060:0                 | 00       | 1.0    | 10.0 | Mode of Operation    |       | SINT  |  |  |  |
|                    |           | 16#60B8:                  | 00       | 2.0    | 11.0 | Touch Probe Function |       | UINT  |  |  |  |
|                    |           | 16#6081:0                 | 00       | 4.0    | 13.0 | ProfileVelocity      |       | UDINT |  |  |  |
|                    |           | 16#6083:0                 | 00       | 4.0    | 17.0 | Profile Acceleration |       | UDINT |  |  |  |
|                    |           |                           |          |        | 21.0 |                      |       |       |  |  |  |
|                    |           |                           |          |        |      |                      |       |       |  |  |  |
|                    |           |                           |          |        |      |                      |       |       |  |  |  |
|                    |           |                           |          |        |      |                      |       |       |  |  |  |

3. Pojawi się nowe okno, w którym należy wpisać nazwę nowej zmiennej, jej adres w formacie szesnastkowym i wybrać typ, np.:

| elect item from object directory |           |           |        |           |    |  |   |  |        |  |
|----------------------------------|-----------|-----------|--------|-----------|----|--|---|--|--------|--|
| Index:Subindex                   | Name      | Flags     | Туре   | Default   |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
|                                  |           |           |        |           |    |  |   |  |        |  |
| Name                             | Max_Torqu | Je        |        |           |    |  |   |  |        |  |
| Index: 16#                       | 6072      |           | Bitle  | ength: 16 | ;  |  | × |  | ОК     |  |
| SubIndex: 16#                    | 0         |           | *<br>* |           |    |  |   |  | Cancel |  |
|                                  |           | Byte Arra | ay Dat | atype: U  | NT |  | - |  |        |  |

## Wskazówka, gdzie można znaleźć adresy zmiennych

W tym samym oknie ("Astraada\_AS64"), w zakładce "Startup parameters", klikając przycisk "Add", można podejżeć adresy i typy zmiennych, jakie mogą być przesyłane za pośrednictwem sieci EtherCAT do serwonapędu ASTRAADA SRV.

| General              | 🕂 Add 🖉 Edit 🗙 🛙    | Delete 🕆 Move        | Up 🕀 Mov                                 | ve Down  |           |               |              |             |             |
|----------------------|---------------------|----------------------|------------------------------------------|----------|-----------|---------------|--------------|-------------|-------------|
| Expert Process Data  | Line Index:Subin    | ndex Name            | Value                                    | Bitlengt | h A       | bort if error | Jump to line | if error Ne | kt line Com |
| Process Data         | Select item from ob | bject directory      |                                          |          |           |               |              |             |             |
| Startup parameters   |                     |                      |                                          |          |           |               |              |             |             |
| EtherCAT I/O Mapping | Index:Subindex      | Name<br>00 SM output | parameter                                | 1        | Flags     | Туре          | Default      |             | ^           |
| The CAT IFC Objects  | 16#2002:16#0        | 00 Parameter         | save                                     | F        | RW        | INT           | 16#0000      |             |             |
| EtherCAT IEC Objects | 16#2003:16#0        | 00 Parameter         | restore                                  | F        | RW        | INT           | 16#0000      |             |             |
| Status               | 16#6040:16#0        | 00 Control we        | Control word                             |          |           | UINT          | 16#0000      |             |             |
|                      | 16#6042:16#0        | 00 vl target v       | vl target velocity                       |          |           | INT           | 16#0000      |             |             |
| Information          | ■ 16#6046:16#0      | 00 vl velocity       | ) vl velocity min max amount             |          |           |               |              |             |             |
|                      | ± 16#6047:16#0      | 00 vl velocity       | min max                                  |          |           |               |              |             |             |
|                      | 16#605D:16#         | 00 Halt option       | n code                                   | F        | RW        | INT           | 16#0000      |             |             |
|                      | 16#6060:16#0        | 00 Operation         | Operation Mode<br>Following error window |          | RW        | SINT          | 16#00        |             |             |
|                      | 16#6065:16#0        | 00 Following         |                                          |          | RW        | UDINT         | 16#0000000   |             |             |
|                      | 16#6066:16#0        | 00 Following         | error time o                             | ut F     | RW        | UINT          | 16#0000      |             |             |
|                      | 16#6071:16#0        | 00 Target tor        | que                                      | F        | RW        | INT           | 16#0000      |             |             |
|                      | 16#6072:16#0        | 00 Max torqu         | e                                        | F        | RW        | UINT          | 16#0000      |             |             |
|                      | 16#607A:16#         | 00 Target Po         | sition                                   | F        | RW        | DINT          | 16#00000000  |             |             |
|                      | ± 16#607B:16#0      | 00 Position ra       | nge limit                                |          |           |               |              |             |             |
|                      | 16#607C:16#         | 00 Home offs         | et                                       | F        | RW        | DINT          | 16#00000000  |             | ×           |
|                      | Name                | Max torque           |                                          |          |           |               |              |             |             |
|                      | Index: 16#          | 6072 🛉 Bit           |                                          |          | ength: 16 |               | -            |             | ок          |
|                      | SubIndex: 16#       | 0                    | <b></b>                                  | Value:   | 0         |               | -            | C           | ancel       |
|                      |                     | Byt                  | e Array                                  |          |           |               |              |             |             |

#### Dość często zachodzi potrzeba dodania następujących parametrów:

| Nazwa                | Adres  | Тур   | llość bitów |
|----------------------|--------|-------|-------------|
| Max Torque           | 0x6072 | UINT  | 16          |
| Homing Method        | 0x6098 | SINT  | 8           |
| Profile Velocity     | 0x6081 | UDINT | 32          |
| Profile Acceleration | 0x6083 | UDINT | 32          |



## ADRESOWANIE DANYCH W PROTOKOLE ETHERCAT

W zakresie danych wymienianych przez sterownik z serwonapędem, adresowanie danych PDO (Process Data Objects) jest zgodne z wytycznymi standardu CiA DS402 i jest następujące:

| Dane czytane<br>przez<br>serwonapęd<br>RxPDO<br>(0x1600)            | Słowo<br>kontrolne<br>Control<br>Word<br>(0x6040) | Zadana<br>pozycja<br>Target<br>Position<br>(0x607A)  | Zadana<br>prędkość<br>Target<br>Velocity<br>(0x6FF) | Zadany<br>moment<br>siły<br>Target<br>Torque<br>(0x6071)  | Zadany<br>maksymalny<br>moment siły<br>Max.<br>Torque<br>(0x6072)   | Zadany<br>tryb pracy<br>Mode of<br>Operation<br>(0x6060)  | Funkcja<br>zatrzaskiwania<br>pozycji<br>Touch Probe<br>(0x60B8)                 |                                                                |
|---------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Dane<br>wysyłane<br>przez<br>serwonapęd<br><b>TxPDO</b><br>(0x1A00) | Słowo<br>statusowe<br>Status Word<br>(0x6041)     | Bieżąca<br>pozycja<br>Actual<br>Position<br>(0x6064) | Bieżąca<br>prędkość<br>Actual<br>Speed<br>(0x606C)  | Bieżący<br>moment<br>siły<br>Actual<br>Torque<br>(0x6077) | Bieżący błąd<br>pozycji<br>Actual<br>Following<br>Error<br>(0x60F4) | Bieżący<br>tryb pracy<br>Mode of<br>Operation<br>(0x6061) | Bieżący status<br>zatrzaśnięcia<br>pozycji<br>Touch Probe<br>Status<br>(0x60B9) | Zatrzaśnięta<br>pozycja<br>Touch<br>Probe<br>Value<br>(0x60BA) |

## DYSTRYBUCJA ZEGARA NETWORK CLOCK SYNCHRONIZATION

Dystrybucja zegara umożliwia używanie przez wszystkie urządzenia na sieci EtherCAT tego samego czasu dla sterowania urządzeń. Pierwsze urządzenie podrzędne pełni rolę urządzenia dystrybuującego czas, a więc rolę urządzenia wzorcowego dla czasu.

## STATUS URZĄDZENIA (SERWONAPĘDU) ZGODNY ZE STANDARDEM CIA DS402 ORAZ WYSYŁANIE POLECEŃ STERUJĄCYCH

Status urządzenia dostępny jest w parametrze Status Word (0x6041). Na stan maszyny można wpływać przede wszystkim poleceniami wydawanymi za pomocą rejestru kontrolnego Control Word (0x6040).



## STATUS SERWONAPĘDU DOSTĘPNY ZA POŚREDNICTWEM SIECI ETHERCAT

Status serwonapędu ASTRAADA SRV może być sprawdzany przy pomocy słowa statusowego (0x6040). Znaczenie większości bitów w słowie statusowym jest niezmienne, ale sens niektórych bitów zależy jest od skonfigurowanego trybu pracy.

## Opis słowa statusowego (STATUS WORD, 0x6041)

Znaczenie poszczególnych bitów w słowie statusowym jest następujące:

| Numer bitu | Opis                                                              | Sposób użycia |
|------------|-------------------------------------------------------------------|---------------|
|            |                                                                   | bitu          |
| 0          | Ready to switch on                                                | М             |
| 1          | Switched on                                                       | М             |
| 2          | Operation enabled                                                 | М             |
| 3          | Fault                                                             | М             |
| 4          | Voltage enabled                                                   | М             |
| 5          | Quick stop                                                        | М             |
| 6          | Switch on disabled                                                | М             |
| 7          | Warning – ostrzeżenie np. o przegrzaniu                           | 0             |
| 8          | Zarezerwowany dla producenta (Manufacture specific)               | 0             |
| 9          | Remote - sterowanie zdalne po sieci EthetCAT                      | М             |
| 10         | Target reached -zadana pozycja lub prędkość została osiągnięta    | М             |
| 11         | Internal limit active - aktywne ograniczenie wewnętrzne           | М             |
|            | serwonapędu jak np. najechanie na krańcówki lub osiągnięcie       |               |
|            | zadanego momentu siły                                             |               |
| 12, 13     | Zależne od trybu pracy:                                           | 0             |
|            |                                                                   |               |
|            | Bit 12 przy sterowaniu pozycją oznacza potwierdzenie otrzymania   |               |
|            | nowej wartości pozycji zadanej (Setpoint acknowledge), a przy     |               |
|            | procedurze kalibracji (Homing) świadczy o zakończeniu kalibracji. |               |
|            |                                                                   |               |
|            | Bit 13 informuje o wystąpieniu błędu (lag/following error)        |               |
| 14, 15     | Manufacture specific - Zarezerwowane dla producenta               | 0             |

Użycie opisanych bitów może być następujące:

- O: użycie opcjonalne,
- M: bit musi być użyty.

Kombinacje bitów 0, 1, 2, 3, 5, 6 mają określone znaczenie:

| Stan bitów          | Znaczenie                     |
|---------------------|-------------------------------|
| MSB LSB             |                               |
| xxxx xxxx x0xx 0000 | Niegotowy do załączenia       |
| xxxx xxxx x1xx 0000 | Switch on zablokowany         |
| xxxx xxxx x01x 0001 | Gotowy na załączenie          |
| xxxx xxxx x01x 0011 | Załączony                     |
| xxxx xxxx x01x 0111 | Zezwolenie na pracę           |
| xxxx xxxx x00x 0111 | Aktywne szybkie zatrzymywanie |
| xxxx xxxx x0xx 1111 | Aktywne reagowanie na błąd    |
| xxxx xxxx x0xx 1000 | Błąd                          |

Znaczenie bitów 4, 7, 8, 9, 10, 11:



| Numer bitu | Opis                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 4          | Załączone napięcie. Stan 1 oznacza, że główny obwód mocy pracuje normalnie.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 7          | Ostrzeżenie. Stan 1 oznacza, że serwonapęd zgłosił alarm.                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 8          | Status kalibracji DC. Stan 1 oznacza, że wewnętrzny zegar został zsynchronizowany z DCSynch0.                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 9          | Praca zdalna. Stan wysoki bitu wskazuje, że serwonapęd ASTRAADA SRV jest kontrolowany przez sterownik<br>ASTRAADA ONE, pracujący jako Master w sieci EtherCAT i sterownik ten zdalnie steruje serwonapędem przesyłając<br>dane PDO (Process Data Objects).                                                                                                              |  |  |  |  |  |  |  |
| 10         | <ul> <li>Zadany parametr został osiągnięty. Bit ten ma różne znaczenie w różnych trybach pracy:</li> <li>W trybie sterowania pozycją oznacza osiągnięcie zadanej pozycji,</li> <li>W trybie sterowania prędkością świadczy o osiągnięciu przez serwonapęd zadanej prędkości,</li> <li>W trybie kalibracji (Homing) oznacza zakończenie procedury kalibracji.</li> </ul> |  |  |  |  |  |  |  |
| 11         | <ul> <li>Aktywne ograniczenie wewnętrzne:</li> <li>W trybie sterowania pozycją oznacza osiągnięcie maksymalnej dozwolonej pozycji.</li> <li>W trybie sterowania predkościa oznacza osiągniecie maksymalnego dozwolonego momentu siły.</li> </ul>                                                                                                                        |  |  |  |  |  |  |  |

#### Znaczenie bitów 12, 13 uzależnione jest od skonfigurowanego trybu pracy:

| Numer bitu | Tryb pracy                                                                                       |                                                                                                     |                                                       |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
|            | Sterowanie pozycją                                                                               | Sterowanie prędkością                                                                               | Kalibracja serwonapędu (Homing)                       |  |  |  |  |  |  |
| 12         | Potwierdzenie osiągnięcia pozycji                                                                | Potwierdzenie osiągnięcia<br>prędkości                                                              | Zakończenie procedury kalibracji<br>(Homing Attained) |  |  |  |  |  |  |
| 13         | Błąd nadążania za zadaną pozycją –<br>zbyt duża rozbieżność pomiędzy<br>pozycją zadaną i bieżącą | Błąd poślizgu (Max Slippage Error) –<br>zbyt duża rozbieżność pomiędzy<br>prędkością zadaną bieżącą | Błąd podczas kalibracji                               |  |  |  |  |  |  |



## **OPIS SŁOWA KONTROLNEGO (CONTROL WORD, 0X6040)**

Znaczenie bitów w słowie kontrolnym jest następujące:

| 15<br>(MS<br>B)           | 11                           | 10          | 9           | 8    | 7              | 6       | 5              | 4             | 3                       | 2          | 1                 | 0 (LSB)   |
|---------------------------|------------------------------|-------------|-------------|------|----------------|---------|----------------|---------------|-------------------------|------------|-------------------|-----------|
| Bi<br>specy<br>d<br>produ | ty<br>ficzne<br>la<br>icenta | Zarez<br>wa | erwo<br>ane | Halt | Fault<br>Reset | C<br>Mc | perat<br>de Sp | ion<br>ecific | Enable<br>Operatio<br>n | Quick Stop | Enable<br>Voltage | Switch On |
| (                         | 2                            | (           | C           | 0    | М              |         | 0              |               | М                       | М          | М                 | М         |

Użycie wymienionych bitów może być następujące:

- O: użycie opcjonalne,
- M: ten bit musi być użyty.

## Znaczenie bitów 4, 5, 6, 8:

Bity te mają rożne znaczenie, zależnie od skonfigurowanego trybu pracy. Tryb pracy należy zdefiniować w rejestrze Mode of Operation (0x6060).

| Nr bitu | Tryb pracy                    |                       |                                  |  |  |  |  |  |  |  |  |
|---------|-------------------------------|-----------------------|----------------------------------|--|--|--|--|--|--|--|--|
|         | Sterowanie pozycją            | Sterowanie prędkością | Kalibrowanie serwonapędu Homing  |  |  |  |  |  |  |  |  |
|         | Position Mode                 | Velocity Mode         | Mode                             |  |  |  |  |  |  |  |  |
| 4       | Wykonaj ruch                  | Nie używany           | Rozpoczęcie procedury kalibracji |  |  |  |  |  |  |  |  |
|         | (New setpoint)                |                       | (Homing)                         |  |  |  |  |  |  |  |  |
| 5       | Zmień nastawę natychmiastowo  | Nie używany           | Nie używany                      |  |  |  |  |  |  |  |  |
|         | (Change setpoint immediately) |                       |                                  |  |  |  |  |  |  |  |  |
| 6       | 0=absolutny                   | Nie używany           | Nie używany                      |  |  |  |  |  |  |  |  |
|         | 1=względny, tj. inkrementalny |                       |                                  |  |  |  |  |  |  |  |  |
|         | (Absolute/relative)           |                       |                                  |  |  |  |  |  |  |  |  |
| 8       | Zatrzymaj                     | Zatrzymaj             | Zatrzymaj                        |  |  |  |  |  |  |  |  |
|         | (Halt)                        | (Halt)                | (Halt)                           |  |  |  |  |  |  |  |  |

#### Bity 9-15 są zarezerwowane.

#### Legenda:

| Bit                     | Pełniona funkcja                                                                          |
|-------------------------|-------------------------------------------------------------------------------------------|
| Switch On               | Załaczania cenwonanedu                                                                    |
| Enable Voltage          | Załączenie obwodu zasilania dla serwonapędu                                               |
| Quick Stop              | Szybkie zatrzymanie (hamowanie dynamiczne)                                                |
| Enable Operation        | Zezwolenie na pracę serwonapędu                                                           |
| Operation Mode Specific | Bity poleceń zależne od skonfigurowanego trybu pracy (zobacz opis w dalszej części). Tryb |
|                         | pracy definiuje się w rejestrze Mode of Operation (0x6060); wartości do wpisania do tego  |
|                         | rejestru podane są w punktach opisujących poszczególne tryby pracy.                       |
| Fault Reset             | Kasowanie błędu                                                                           |
| Halt                    | Polecenie zatrzymania z hamowaniem dynamicznym                                            |



## Znaczenie bitów 0, 1, 2, 3, 7 w kontekście realizowanych poleceń:

| Komenda                             |             | Bit słowa ko        | ontrolnego Contro | l Word         |           | Numer                                                |
|-------------------------------------|-------------|---------------------|-------------------|----------------|-----------|------------------------------------------------------|
|                                     | Fault Reset | Enable<br>Operation | Quick Stop        | Enable Voltage | Switch On | przejścia w<br>grafie przejść<br>pomiędzy<br>stanami |
| Wyłączanie                          | 0           | Х                   | 1                 | 1              | 0         | 2                                                    |
| Wyłączanie                          | 0           | 0                   | 1                 | 1              | 1         | 10                                                   |
| Załączanie                          | 0           | 1                   | 1                 | 1              | 1         | 3                                                    |
| Wyłączanie<br>zasilania silnika     | 0           | X                   | x                 | 0              | х         | 7, 9, 10, 12                                         |
| Szybkie<br>zatrzymanie              | 0           | X                   | 0                 | 1              | х         | 7, 10, 11                                            |
| Wycofanie<br>zezwolenia na<br>pracę | 0           | 0                   | 1                 | 1              | 1         | 5                                                    |
| Zezwolenie na<br>pracę              | 0           | 1                   | 1                 | 1              | 1         | 4, 16                                                |
| Kasowanie błędu                     |             | Х                   | X                 | x              | х         | 15                                                   |



## PRACA W TRYBIE STEROWANIA POZYCJĄ

Praca w tym trybie polega na osiąganiu zadanej pozycji, z zadaną prędkością ruchu, przyspieszeniem oraz momentem siły. W trybie sterowania pozycją przydatne będą następujące rejestry:

W trybie sterowania pozycją przydatne są poniższe parametry:

| Adres  | Nazwa                        | Тур         | Atrybut |
|--------|------------------------------|-------------|---------|
|        |                              |             | - 4     |
| 0x6040 | Control Word                 | UNSIGNED 16 | R/W     |
| 0x6041 | Status Word                  | UNSIGNED 16 | R       |
| 0x6060 | Modes of operation           | INTEGER 8   | R/W     |
| 0x6061 | Modes of operation display   | INTEGER 8   | R       |
| 0x6062 | Position demand value        | INTEGER 32  | R       |
| 0x6063 | Position actual value        | INTEGER 32  | R       |
| 0x6064 | Position actual value        | INTEGER 32  | R       |
| 0x6065 | Following error window       | UNSIGNED 32 | R/W     |
| 0x6067 | Position window              | UNSIGNED 32 | R/W     |
| 0x607A | Target position              | INTEGER 32  | R/W     |
| 0x6081 | Profile velocity             | UNSIGNED 32 | R/W     |
| 0x6083 | Profile acceleration         | UNSIGNED 32 | R/W     |
| 0x6084 | Profile Deceleration         | UNSIGNED 32 | R/W     |
| 0x6093 | Position factor              | UNSIGNED 32 | R/W     |
| 0x60F4 | Following error actual value | INTEGER 32  | R       |
| 0x60FC | Position demand value        | INTEGER 32  | R       |

<u>Legenda</u>

INTEGER 8 – format liczby całkowitej ze znakiem, 8-bitowej

INTEGER 32 – format liczby całkowitej ze znakiem, 32-bitowej

UNSIGNED 16 - format liczby całkowitej bez znaku, 16-bitowej

UNSIGNED 32 - format liczby całkowitej bez znaku, 32-bitowej

R – parametr może być tylko czytany

R/W – parametr może być zarówno czytany, jaki i zapisywany

Szczegółowy opis poszczególnych obiektów wymienionych w tabeli znaleźć można w standardzie CiA DS402.



## Aby uruchomić serwonapęd do pracy w tym trybie, wykonaj następujące kroki

- Połącz się ze sterownikiem, a następnie przejdź do składnika "Astraada\_AS64", do zakładki "EtherCAT I/O Mapping".
   Każdą nowo wprowadzoną wartość należy wpisywać w kolumnie "Prepared Value", a chcąc ją wpisać do sterownika, należy nacisnąć na klawiaturze przyciski Ctrl + F7, chcąc wykonać force – należy nacisnąć przycisk F7.
- 2. Ustaw tryb pracy, tj. parametr Mode of Operation (0x6060) na wartość 1. Jest to wybranie trybu sterowania pozycją.
- Zadaj prędkość ruchu w parametrze Profile Velocity (0x6081). Jednostki prędkości zadanej to obroty/minutę, a zakres dla silnika 6000rpm to <0 ... 6000rpm>. Zadana prędkość za pośrednictwem sieci EtherCAT zostanie skopiowana do parametru wewnętrznego serwonapędu P5.21 (target speed). W trybie sterowania prędkością nie korzysta się z parametru Target Velocity (0x60FF).
- 4. Zadaj przyspieszenie dla ruchu w parametrze Profile Acceleration (0x6083). Wartość tą należy wpisać jako czas w ms, w którym zostanie zrealizowane przyspieszenie od spoczynku do prędkości znamionowej serwonapędu (rated speed). Zadana za pomocą sieci EtherCAT wartość przyspieszenia zostanie skopiowana do wewnętrznego parametru serwonapędu P5.37 (ACC/DEC time).
- Zadaj ograniczenie momentu siły dla serwonapędu Max Torque (0x6072), np. wartość 100 (przykładowo, wartość ok. 40 jest wartością progową dla pokonania oporów w samym silniku). Ta wartość podawana jest w dziesiątych częściach procenta, a więc wartości 1000 będzie odpowiadać 100% znamionowego momentu siły silnika.
- Zadaj pozycję dla ruchu w parametrze Target Position (0x607A). Jednostki to: user unit. Przykładowo, wpisanie wartości 100 000 spowoduje wykonanie 10 pełnych obrotów (w przypadku użycia silnika z wbudowanym enkoderem 2500 działek/obrót, tj. 10 000 impulsów/ obrót).
- 7. Rozwijając słowo kontrolne Control Word (0x6040) rozpocznij ruch:
  - W celu załączenia serwonapędu załącz cztery najmniej znaczące bity tego słowa (np. wpisz wartość 1111 binarnie lub 15 dziesiętnie lub 0x0F szesnastkowo).
     Są to bity oznaczone jako: %QX2.0; %QX2.1; %QX2.2; %QX2.3.
     Zalecana kolejność załączania bitów to:
    - i. Enable Voltage
    - ii. Quick Stop
    - iii. Switch On
    - iv. Enable Operation
  - b. W celu realizacji ruchu w trybie relatywnym wpisz wartość 1111111 binarnie lub 127 dziesiętnie. Odpowiada to załączeniu trzech kolejnych bitów : %QX2.4; %QX2.5; %QX2.6 (New set-point, Change set immediately, Absolute/Relative. Po załączeniu bitów kontrolnych oś serwonapędu jest sterowana zadaną wartością prędkości i momentu siły.

Zmianę pozycji możesz obserwować w rejestrze Position Actual Value (0x6064).

Bieżącą prędkość możesz obserwować w rejestrze Speed Actual Value (0x606C).

Opcjonalnie możesz też obserwować bieżący moment siły Torque Actual Value (0x6077), błąd pozycji Following Error Actual Value (0x60F4) oraz prąd pobierany przez silnik Current Actual Value (0x6078).

Sprawdź rejestr statusowy Status Word (0x6041), który informuje o stanie serwonapędu.

Jeżeli serwonapęd zgłosił błąd (np. na skutek niewłaściwie zadanych parametrów ruchu, przykładowo błąd o kodzie Er22-0 w przypadku nieutrzymania pozycji na skutek zadania zbyt małego momentu siły), można go skasować zmieniając stan bitu kontrolnego Fault Reset z 0 na 1 w słowie kontrolnym, tj. bit 7 w Control Word (0x6040).

Zatrzymanie ruchu może odbyć się przez wyzerowanie zezwoleń na ruch w słowie kontrolnym Control Word (0x6040) albo przez załączenie ósmego bitu w tym słowie, tj. bitu Halt.

## Uwaga

Przed wywołaniem ruchu serwonapęd musi być w stanie gotowości, tj. musi mieć załączone bity 0, 1, 2, 3 (odpowiada to wartości dziesiętnej 15 w rejestrze kontrolnym). Dopiero wtedy można wydać polecenie ruchu, a więc, jak opisano w przykładzie powyżej, załączyć dodatkowo bity 4, 5, 6 (co odpowiada wartości 127 dziesiętnie). Serwonapęd <u>nie wykona ruchu</u> w przypadku przejścia ze stanu wyłączenia (wyzerowane wszystkie bity kontrolne) do załączenia i wydania polecenia ruchu, tj. *zmiany bitu 4 z False na True* (nowa nastawa); np. mogą zostać załączone jednocześnie bity 0, 1, 2, 3, 4, 5, 6, co odpowiada wartości 127 dziesiętnie. Przykładowa prawidłowa sekwencja załączania bitów w słowie kontrolnym jest następująca:

| Kolejne<br>polecenie w<br>sekwencji | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Stan serwonapędu                   |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------------------|
| 1                                   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | Niegotowy (0dec)                   |
| 2                                   | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Gotowy (15dec)                     |
| 3                                   | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | Polecenie ruchu w trybie           |
|                                     |       |       |       |       |       |       |       |       |       | relatywnym,                        |
|                                     |       |       |       |       |       |       |       |       |       | natychmiastowe (127dec)            |
| 4                                   | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Gotowy (15dec)                     |
| 5                                   | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | Polecenie ruchu w trybie           |
|                                     |       |       |       |       |       |       |       |       |       | relatywnym,                        |
|                                     |       |       |       |       |       |       |       |       |       | natychmiastowe (127dec)            |
| 6                                   | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Gotowy (15dec)                     |
| 7                                   | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | Polecenie ruchu w trybie           |
|                                     |       |       |       |       |       |       |       |       |       | relatywnym,                        |
|                                     |       |       |       |       |       |       |       |       |       | natychmiastowe (127dec)            |
| 8                                   | 1     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Polecenie zatrzymania              |
|                                     |       |       |       |       |       |       |       |       |       | (Halt) <sup>1</sup> (256dec)       |
| 9                                   | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Gotowy (15dec)                     |
| 10                                  | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | Polecenie ruchu (127dec)           |
| 11                                  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | Wolny wybieg <sup>2</sup> (271dec) |
| 12                                  | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | Gotowy (15dec)                     |

<sup>&</sup>lt;sup>1</sup> Polecenie Halt spowoduje szybkie zatrzymanie serwonapędu i utrzymanie bieżącej pozycji. Jeżeli serwonapęd byłby pod obciążeniem, to będzie on próbował skompensować działające na niego siły.



<sup>&</sup>lt;sup>2</sup> Wolny wybieg przy rozpędzonym serwonapędzie spowoduje odcięcie napięcia zasilającego silnik i zatrzymanie serwonapędu na skutek działających sił oporu. Natomiast w przypadku obciążenia serwonapędu siłami, np. siłą grawitacji podnoszonego przezeń obiektu, nastąpi opadanie tego obiektu.



| 13   |   |   |   |   |   |   |   |   |   | Polecenie ruchu w trybie<br>relatywnym, do<br>wykonania po<br>zakończeniu bieżacego |
|------|---|---|---|---|---|---|---|---|---|-------------------------------------------------------------------------------------|
|      |   |   |   |   |   |   |   |   |   | ruchu (95dec)                                                                       |
| 14   | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |   | Polecenie ruchu w trybie<br>absolutnym,<br>natychmiastowe (63dec)                   |
| 15   | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Kasowanie błędu<br>(128dec)                                                         |
| itd. |   |   |   |   |   |   |   |   |   |                                                                                     |

Przed wydaniem kolejnego polecenia należy upewnić się co do aktualnego stanu, w jakim znajduje się serwonapęd. W tym celu proszę sprawdzić bity w słowie kontrolnym. Znaczenie bitów w słowie kontrolnym opisane jest we wcześniejszej części niniejszej dokumentacji.

| Devices                                      | •     | ņ    | ×     |
|----------------------------------------------|-------|------|-------|
| E ist_servo                                  |       |      | •     |
| 😑 🧐 Device [connected] (Berghof MX6 Control) |       |      |       |
| 🖃 🗐 PLC Logic                                |       |      |       |
| 🖹 💮 Application [run]                        |       |      |       |
| - 📶 Library Manager                          |       |      |       |
| PLC_PRG (PRG)                                |       |      |       |
| 🖃 🎆 Task Configuration                       |       |      |       |
| 🐨 🚱 😂 EtherCAT_Task (IEC-Tasks)              |       |      |       |
| 😑 😏 鯵 MainTask (IEC-Tasks)                   |       |      |       |
| PLC_PRG                                      |       |      |       |
| 🗏 🧐 EtherCAT_Master (EtherCAT Master)        |       |      |       |
| 😏 🛐 Astraada_AS64 (Astraada_SRV_64_Eth       | nerCA | T(Co | DE) [ |

Dostęp do parametrów serwonapędu możliwy jest w oprogramowaniu CodeSYS po połączeniu się ze sterownikiem ASTRAADA One i po dwukrotnym kliknięciu na serwonapęd w oknie Devices (pozycja Astraada\_SRV\_64).

W zakładce *EtherCAT I/O Mapping* można obserwować dane i zmieniać ich wartości.

| General              | Find        |         | Filter Show all        |         |       | <ul> <li>Add FB f</li> </ul> | or IO Cł | hannel → Go to Instar  |
|----------------------|-------------|---------|------------------------|---------|-------|------------------------------|----------|------------------------|
| Process Data         | Variable    | Mapping | Channel                | Address | Туре  | Default Value                | Unit     | Description            |
| Tocess Data          | 🕀 🍢         |         | Control Word           | %QW0    | UINT  |                              |          | Control Word           |
| Startup Parameters   | 😟 🍢         |         | Target Position        | %QD1    | DINT  |                              |          | Target Position        |
|                      | 😐 🍢         |         | Target Velocity        | %QD2    | DINT  |                              |          | Target Velocity        |
| Log                  | 🖽 🍢         |         | Mode of Operation      | %QB12   | SINT  |                              |          | Mode of Operation      |
|                      | <b>⊕*</b> ⊘ |         | Target torque          | %QW7    | INT   |                              |          | Target torque          |
| EtherCAT I/O Mapping | 😟 - 🍢       |         | Touch probe control    | %QW8    | UINT  |                              |          | Touch probe control    |
|                      | 🖹 🍢         |         | Positive torque limit  | %QW9    | UINT  |                              |          | Positive torque limit  |
| EtherCAT IEC Objects | 😟 - 🍢       |         | Negtive torque limit   | %QW10   | UINT  |                              |          | Negtive torque limit   |
| Chatura              | 😟 🍢         |         | Max profile velocity   | %QD6    | UDINT |                              |          | Max profile velocity   |
| Status               | ۰ کې        |         | Status Word            | %IW0    | UINT  |                              |          | Status Word            |
| Information          | 😟 🦄         |         | Position Actual Value  | %ID1    | DINT  |                              |          | Position Actual Value  |
|                      | 😟 ᡟ         |         | Speed Actual Value     | %ID2    | DINT  |                              |          | Speed Actual Value     |
|                      | ٠٠٠ 🆌       |         | Torque Actual Value    | %IW6    | INT   |                              |          | Torque Actual Value    |
|                      | 😟 · 🏘       |         | Operation Mode Display | %IB14   | SINT  |                              |          | Operation Mode Display |
|                      | 😟 🎽         |         | Current Actual Value   | %IW8    | INT   |                              |          | Current Actual Value   |
|                      | 🗎 🎽         |         | Touch Probe Status     | %IW9    | UINT  |                              |          | Touch Probe Status     |
|                      | 😟 🎽         |         | Touch Probe Value      | %ID5    | DINT  |                              |          | Touch Probe Value      |
|                      | 🖻 🍫         |         | Digital outputs        | %ID6    | UDINT |                              |          | Digital outputs        |
|                      | 😟 🦄         |         | Digital inputs         | %ID7    | UDINT |                              |          | Digital inputs         |

support@astor.com.pl www.astor.com.pl/kontakt



#### Programowanie sekwencji ruchów

Wykonanie ruchu na pozycję następuje po:

- Określeniu parametrów tego ruchu, jak prędkość, dystans, czas przyspieszania,
- Zmianę stanu czwartego bitu kontrolnego z FALSE na TRUE.

Stan serwonapędu można obserwować za pomocą bitów słowa statusowego otrzymanego z serwonapędu. W szczególności bity 10 i 12 są przydatne dla programowania sekwencji ruchów, czyli kilku ruchów wykonywanych po sobie:

- Stan wysoki bitu 12 jest potwierdzeniem od serwonapędu o przyjęciu nowej komendy do wykonania,
- Stan wysoki bitu 10 świadczy o zakończeniu ruchu.

Sugeruje się wydawanie tylko jednego polecenia z zawczasu, tzn. w trakcie wykonywania bieżącego ruchu bądź też wydawanego po zakończeniu ruchu. W przypadku wydania od razu kilku kolejnych poleceń serwonapęd co prawda zapamięta je w kolejce do zrealizowania, ale nie będzie możliwości łatwego śledzenia, który ruch z zadanej sekwencji jest aktualnie wykonywany przez oś.

Idea tworzenia sekwencji ruchów jest następująca:





Uproszczony algorytm łączenia ruchów w sekwencję:





## PRACA W TRYBIE STEROWANIA PRĘDKOŚCIĄ

W trybie sterowania prędkością, serwonapęd realizuje ruch z zadaną prędkością. Zmiany prędkości realizowane są zgodnie z zadanym przyspieszeniem. Aby uruchomić serwonapęd do pracy w tym trybie, wykonaj następujące kroki:

1. Połącz się ze sterownikiem, a następnie przejdź do składnika "Astraada\_AS64", do zakładki "EtherCAT I/O Mapping".

Każdą nowo wprowadzoną wartość należy wpisywać w kolumnie "Prepared Value", a chcąc ją wpisać do sterownika, należy nacisnąć na klawiaturze przyciski Ctrl + F7, chcąc wykonać force – należy nacisnąć przycisk F7.

- Wybierz tryb pracy serwonapędu jako sterowanie prędkością. W tym celu, do parametru Mode of Operations (0x6060) wpisz wartość 3 – jest to wybranie trybu sterowania prędkością.
- W parametrze Profile Acceleration (0x6083) zadaj przyspieszenie dla rozpędzania. Wartość zadawana jest w milisekundach, jako czas rozpędzania od spoczynku do prędkości znamionowej serwonapędu. P0.54. serwonapęd pozwala na zdefiniowanie innego czasu rozpędzania (Profile Acceleration) niż czasu hamowania (Profile Deceleration).
- 4. Zadaj ograniczenie momentu siły dla serwonapędu Max Torque (0x6072), np. wartość 100 (przykładowo, wartość ok. 40 jest wartością progową dla pokonania oporów w samym silniku). Ta wartość podawana jest w dziesiątych częściach procenta, a więc wartości 1000 będzie odpowiadać 100% znamionowego momentu siły silnika, wartości 40 będzie odpowiadać 4% znamionowego momentu siły, itp.
- W parametrze Profile Deceleration (0x6084) zadaj przyspieszenie dla hamowania. Wartość zadawana jest w milisekundach, jako czas hamowania od prędkości znamionowej serwonapędu do zatrzymania. Wartość ta zostanie skopiowana do parametru wewnętrznego serwonapędu P0.55.
- 6. Za pomocą odpowiednich bitów w rejestrze kontrolnym Control Word (0x6040) załącz serwonapęd. Należy w tym celu załączyć cztery najmłodsze bity 0000 0000 0000 1111, (oznaczone jako: %QX2.0; %QX2.1; %QX2.2; %QX2.3). Zalecana kolejność załączania bitów to:
  - i. Enable Voltage,
  - ii. Quick Stop,
  - iii. Switch On,
  - iv. Enable Operation.
- 7. Zadaj prędkość ruchu w parametrze Target Velocity (0x60FF). Prędkość zadawana jest w obrotach na minutę. Zadana wartość zostanie skopiowana do parametru wewnętrznego serwonapędu P4.13. CiA DS402, w trybie sterowania prędkością wartość prędkości należy zadawać w parametrze Target Velocity (0x60FF), a nie Profile Velocity (0x6081). Zakres wartości dla silnika 2000rpm to <-2000 ... +2000rpm>. w przeciwieństwie do trybu sterowania pozycją, w trybie sterowania prędkości zmiana wartości zadanej prędkości spowoduje natychmiastową reakcję silnika serwonapędu.
- Za pomocą odpowiednich bitów słowa statusowego Status Word (0x6041) zaobserwuj pracę serwonapędu. Skorzystaj z bitów: Speed zero, Max slippage error, Target reached, Internal limit active.
- 9. Zmiana na ruchu parametrów, np. zadanej prędkości Target Velocity (0x60FF) oraz momentu siły Max Torque (0x6072) zostanie natychmiast zrealizowana przez serwonapęd.



## **KALIBROWANIE SERWONAPĘDU (HOMING)**

Kalibrowanie serwonapędu poprzez wywołanie procedury Homing używane jest w celu znalezienia pozycji bazowej. Użytkownik określa metodę bazowania oraz jego prędkość. W tym trybie konieczne jest dołączenie do serwonapędu zewnętrznego czujnika Home Switch, do gniazda CN1.

Korzystanie z procedury Homing jest następujące:

1. Połącz się ze sterownikiem, a następnie przejdź do składnika "Astraada\_SRV\_64", do zakładki "EtherCAT I/O Mapping".

Każdą nowo wprowadzoną wartość należy wpisywać w kolumnie "Prepared Value", a chcąc ją wpisać do sterownika, należy nacisnąć na klawiaturze przyciski Ctrl + F7, chcąc wykonać force – należy nacisnąć przycisk F7.

- 2. Aktywuj tryb Homing poprzez wpisanie wartości **6** do rejestru definiującego tryb pracy serwonapędu, tj. rejestru Mode of Operations (0x6060).
- 3. Istnieją różne metody bazowania, dlatego do rejestru określającego metodę bazowania, tj. Homing Method (0x6098) wpisz odpowiednią wartość z zakresu od 1 do 35, zgodnie ze standardem DS402.
- 4. Wpisz przesunięcie Homing Offset (0x607C). Wprowadzona wartość zostanie skopiowana do parametru P5.14 serwonapędu.
- Wpisz pierwszą prędkość bazowania (Sub-1) w parametrze Homing Speed (0x6099, element nr 1 tablicy 2-elementowej). Prędkość ta zadawana jest w obrotach na minutę. Wprowadzona wartość zostanie skopiowana do parametru P5.12 serwonapędu (domyślnie znajduje się tam wartość 100).
- Wpisz drugą prędkość bazowania (Sub-2) w parametrze Homing Speed (0x6099, element nr 2 tablicy 2-elementowej). Prędkość ta zadawana jest w obrotach na minutę. Wprowadzona wartość zostanie skopiowana do parametru P5.13 serwonapędu (domyślnie znajduje się tam wartość 20).
- 7. Zadaj ograniczenie momentu siły w parametrze Max Torque (0x6072). Jednostki dla wartości tego parametru to dziesiąte części procenta znamionowego momentu siły.
- Skonfiguruj w serwonapędzie wejście Home. W tym celu dla wybranego wejścia w serwonapędzie skonfiguruj funkcję nr 0x17 lub 0x117 (Home switch input). W tym celu, za pomocą klawiatury na wzmacniaczu lub oprogramowania konfiguracyjnego do wzmacniacza, wpisz tą funkcję do parametru o odpowiednim numerze.

#### Logika działania wejść

Różnicą pomiędzy funkcją 17 a 117 jest logika działania wejścia. Przypisanie wejściu funkcji 117 oznaczać będzie, że czujnik HOME jest *normalnie otwarty*, czyli dopiero po najechaniu na niego zostanie zamknięty obwód dla wejścia i podane będzie wtedy napięcie 24VDC na wejście wzmacniacza. Funkcja 17 działa w logice odwrotnej, tj. zakłada się wtedy, że po najechaniu na czujnik następuje rozwarcie obwodu i odcięcie napięcia 24VDC z wejścia wzmacniacza, a więc jest dedykowana dla czujnika HOME *normalnie zamkniętego*. Opis wybranych zacisków w gnieździe przyłączeniowym CN1 wzmacniacza i rejestrów parametryzujących funkcje dla wejść dwustanowych:

| Nr zacisku | Wejście                    | Parametr we<br>wzmacniaczu | Przykładowa<br>konfiguracia | Nazwa | Funkcja                                           |
|------------|----------------------------|----------------------------|-----------------------------|-------|---------------------------------------------------|
| 16         | DI1 – Digital input<br>1   | P3.00                      | 0x03                        | SON   | Uaktywnienie serwonapędu (Servo<br>enabling)      |
| 37         | DI2 – Digital input<br>2   | P3.01                      | 0x17                        | HOME  | Wejście z czujnika bazowania (HOME)               |
| 10         | DI3 – Digital input<br>3   | P3.02                      | 0x04                        | CLA   | Kasowanie błędu (Alarm clearance)                 |
| 39         | DI4 – Digital input<br>4   | P3.03                      | 0x16                        | EMG   | Wyłącznik bezpieczeństwa (Emergency<br>Stop)      |
| 34         | DI5 – Digital input<br>5   | P3.04                      | 0x00                        | -     | -                                                 |
| 17         | DI6 – Digital input<br>6   | P3.05                      | 0x00                        | -     | -                                                 |
| 3          | DI7 – Digital input<br>7   | P3.06                      | 0x00                        | -     | -                                                 |
| 4          | DI8 – Digital input<br>8   | P3.07                      | 0x00                        | -     | -                                                 |
| 18         | DI9 – Digital input<br>9   | P3.08                      | 0x00                        | -     | -                                                 |
| 22         | DI10 – Digital input<br>10 | P3.09                      | 0x0                         | -     | -                                                 |
| 2          | -                          | -                          | -                           | COM+  | Wejście dla zasilania (24VDC lub 0V) <sup>3</sup> |
| 12         | -                          | -                          | -                           | COM-  | Masa dla wewnętrznego źródła zasilania<br>24VDC   |
| 40         | -                          | -                          | -                           | 24V   | Wyjście z wewnętrznego źródła zasilania<br>24VDC  |

Uwaga: po zmianie konfiguracji wejść konieczny jest restart zasilania serwonapędu. Sprawdzana wtedy jest poprawność konfiguracji wejść (np. czy nie powtarzają się przypisane funkcje dla różnych wejść).

Jak widać, w powyższym przykładzie wejściu DI2 została przypisana funkcja HOME, dedykowana dla czujnika HOME normalnie zamkniętego.

Podłącz do tego wejścia sygnał z czujnika bazowania HOME. Rozmieszczenie zacisków przyłączeniowych w gnieździe CN1 jest następujące (widok na gniazdo, patrząc na przód wzmacniacza):

<sup>&</sup>lt;sup>3</sup> Wejścia dwustanowe we wzmacniaczu są bipolarne; proszę porównać ze schematami obwodów wejściowych, zamieszczonych w dalszej części tej dokumentacji.



| 1 | 5 | 14 | 4 | 13 | 3  | 12 | 1 | 1  | 10 |    | 9  | 8  | }  | 7  |    | 6  |    | 5  | 4  | ļ | 3  | 2  | 2  | 1 |    |   |
|---|---|----|---|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|----|---|----|---|
|   | 3 | 0  | 2 | 9  | 28 | 2  | 7 | 26 | 3  | 25 | 2  | 4  | 2: | 3  | 22 | 2  | 21 | 2  | 0  | 1 | 9  | 18 | 17 | 7 | 16 | 6 |
|   |   | 44 | 4 | 43 | 3  | 42 | 4 | 1  | 40 |    | 39 | 38 | 8  | 37 | ,  | 36 |    | 35 | 34 | 4 | 33 | 3  | 2  | 3 | 1  | _ |

W przypadku użycia wejścia DI2 jako HOME, można zewrzeć zaciski 40 (24V) z 2 (COM+). Aktywowanie tego wejścia nastąpi w momencie połączenia zacisku 37 (DI2) z 12 (COM-).

Wejścia dwustanowe serwonapędu ASTRAADA SRV mogą zostać podłączone do pracy w *logice dodatniej* lub *logice ujemnej*. Wybór logiki odbywa się dla wszystkich wejść, a nie indywidulanie dla każdego z wejść. Sposoby podłączenia sygnału do wejść dwustanowych z użyciem zewnętrznego źródła 24VDC z uwzględnieniem logiki dodatniej i ujemnej oraz źródła zasilania wewnętrznego i zewnętrznego są następujące:

Podłączenie wejścia dwustanowego z użyciem zewnętrznego źródła zasilania



Podłączenie wejścia dwustanowego z użyciem lokalnego zasilacza we wzmacniaczu





- 9. Za pomocą bitów w słowie kontrolnym Control Word (0x6040) załącz serwonapęd (tj. załącz cztery najmłodsze bity).
- 10. Zmiana stanu bitu Bit4 w słowie kontrolnym 0 -> 1 rozpocznie procedurę bazowania.
- 11. Sprawdź stan silnika oraz czujnika Home Switch po zakończeniu procedury bazowania.
- 12. Za pomocą odpowiednich bitów słowa statusowego Status Word (0x6041) zaobserwuj pracę serwonapędu. Skorzystaj z bitów: Homing error, Homing Attained, Target reached.

#### Lista parametrów powiązanych z bazowaniem osi

| Adres  | Nazwa                                                    | Тур        | Odczyt/zapis |
|--------|----------------------------------------------------------|------------|--------------|
| 0x6040 | Słowo kontrolne                                          | UNSIGNED16 | RW           |
| 0x6041 | Słowo statusowe                                          | UNSIGNED16 | RO           |
| 0x6060 | Tryb pracy serwonapędu                                   | INTEGER8   | RW           |
| 0x6061 | Prezentowanie trybu pracy (potwierdzenie zadanego trybu) | INTEGER8   | RO           |
| 0x607C | Przesunięcie Offset dla pozycji bazowej                  | INTEGER32  | RW           |
| 0x6098 | Metoda bazowania                                         | UNSIGNED32 | RW           |
| 0x6099 | Dwie prędkości bazowania                                 | ARRAY      | RW           |

#### Analiza słowa statusowego Status Word (0x6041) pod kątem funkcji Home.

| Numer<br>bitu | 15 (MSB) | 14 | 13        | 12          | 11 | 10         | 90<br>(LSB) |  |
|---------------|----------|----|-----------|-------------|----|------------|-------------|--|
| Znaczenie     |          |    | Błąd      | Zakończenie |    | Pozycja    |             |  |
| bitu          |          |    | bazowania | bazowania   |    | osiągnięta |             |  |
|               |          |    | (Homing   | (Homing     |    | (Target    |             |  |
|               |          |    | Error)    | Attained)   |    | reached)   |             |  |

#### Legenda:

| Nazwa                 | Wartość | Opis                                                                  |
|-----------------------|---------|-----------------------------------------------------------------------|
| Pozycja osiągnięta    | 0       | Halt = 0: pozycja bazowa nie osiągnięta                               |
|                       |         | Halt = 1: oś w trakcie hamowania                                      |
|                       | 1       | Halt = 0: pozycja bazowa osiągnięta                                   |
|                       |         | Halt = 1: oś zatrzymana                                               |
| Zakończenie bazowania | 0       | Procedura bazowania nie zakończona                                    |
|                       | 1       | Procedura bazowania zakończona powodzeniem                            |
| Błąd bazowania        | 0       | Brak błędu bazowania                                                  |
|                       | 1       | Wystąpił błąd bazowania, przyczynę błędu można znaleźć w kodzie błędu |

Przed wywołaniem ruchu na pozycję bazową HOME, należy określić prędkości najazdowe. Określa się prędkość najazdu zgrubnego (prędkość większą) oraz najazdu dokładnego (prędkość mniejszą) w 2-elementowym parametrze tablicowym o adresie 0x6099 Sub1 i 0x6099 Sub2 Homing Speeds. Wartości ustawione w tym parametrze zostaną zapisane w serwonapędzie w parametrach P5.12 i P5.13 wzmacniacza serwonapędu.



## Przykładowa metoda bazowania:

| Wartość<br>parametru<br>Homing Method<br>(0x6098) | Metoda                                                                        | Opis                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                                 | Bazowanie z użyciem<br>krańcówki Home Switch<br>i znacznika "Z" z<br>enkodera | <ul> <li>Oś rozpoczyna ruch z większą prędkością najazdową (1) w kierunku "do przodu".</li> <li>Po najechaniu na czujnik HOME następuje zmniejszenie prędkości do (2), do momentu aż oś zjedzie z czujnika HOME.</li> <li>Po zjechaniu z czujnika następuje zawrócenie kierunku ruchu i jazda z mniejszą prędkością (2).</li> <li>Po najechaniu na czujnik HOME następuje ruch, aż do pierwszego znacznika "Z" i zatrzymanie osi w pozycji HOME.</li> </ul> |

Proszę zwrócić uwagę na skonfigurowaną logikę działania dla wejścia HOME. W przypadku wybrania niewłaściwej logiki zostanie zrealizowana tylko druga część najazdu na czujnik HOME, tj. z drugą prędkością.



## WYŚWIETLENIE WIZUALIZACJI W OKNIE PRZEGLĄDARKI

Aby wyświetlić aplikację wizualizacyjną w oknie przeglądarki, należy wpisać w niej adres wg. następującego wzorca:

http://169.254.255.1:8080/test.htm

gdzie:

- 169.254.255.1 jest przykładowym adresem IP sterownika ASTRAADA ONE
- "test" jest przykładową nazwą okna startowego dla wizualizacji.







## WYBRANE KODY BŁĘDÓW ETHERCAT

Podczas pracy z serwonapędem można spotkać następujące kody błędów, wyświetlane na wyświetlaczu wzmacniacza:

| Kod błędu | Opis                                                                                                                                                                       |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Er01-0    | Uszkodzenie tranzystora IGBT                                                                                                                                               |  |  |
| Er02-0    | Błąd enkodera – przerwane połączenie                                                                                                                                       |  |  |
| Er02-7    | Brak komunikacji z enkoderem (uszkodzony lub niepodłączony enkoder)                                                                                                        |  |  |
| Er02-c    | Błąd enkodera – brak danych w pamięci EEPROM                                                                                                                               |  |  |
| Er04-0    | Błąd inicjalizacji systemu                                                                                                                                                 |  |  |
| Er07-0    | Błąd przeciążenia podczas odzysku energii (hamowania)                                                                                                                      |  |  |
| Er09-1    | Nie załadowano wstępnych parametrów wzmacniacza (EEPROM fault – data verification error); proszę odesłać<br>wzmacniacz do firmy ASTOR                                      |  |  |
| Er12-0    | Przypisano tą samą funkcję dla dwóch lub więcej wejść dwustanowych wzmacniacza                                                                                             |  |  |
| Er22-0    | Nie udało się osiągnąć zadanej pozycji (może to wynikać np. ze zbyt małej wartości momentu siły, jaką dysponuje silnik lub programowego ograniczenia momentu siły silnika) |  |  |
| Er24-b    | Utrata komunikacji EtherCAT (upłynięcie zadeklarowanego czasu timeout w parametrze P4.09).                                                                                 |  |  |
|           | Błąd ten zostanie zgłoszony również wtedy, gdy komunikacja EtherCAT przebiega poprawnie, lecz kabel                                                                        |  |  |
|           | komunikacyjny EtherCAT łączący sterownik ASTRAADA ONE ze wzmacniaczem został wpięty do gniazda drugiego,                                                                   |  |  |
|           | zamiast do gniazda pierwszego we wzmacniaczu (gniazdo CN3).                                                                                                                |  |  |
| Er24-c    | EtherCAT fault-EEPROM fault                                                                                                                                                |  |  |

O ile nie jest to błąd sprzętowy, to kasowanie błędu wzmacniacza może odbyć się jedną z poniższych metod:

- restart zasilania wzmacniacza,
- za pomocą wejścia dwustanowego, dla którego przypisano funkcję kasowania błędów Alarm Clearing CLA (funkcja nr 04),
- bitem 7 słowa kontrolnego ControlWord, wysyłanego do serwonapędu za pomocą sieci EtherCAT (pod warunkiem, że komunikacja EtherCAT w dalszym ciągu funkcjonuje poprawnie).



## CO SPRAWDZIĆ, GDY SERWONAPĘD NIE DZIAŁA

Jeżeli serwonapęd nie działa, proszę sprawdzić:

- czy zadany moment siły (Max Torque) nie jest zerowy,
- czy pozostałe parametry są prawidłowe (np. niezerowa prędkość zadana),
- czy serwonapęd nie został zatrzymany poleceniem HALT (załączony ósmy bit w słowie kontrolnym),
- czy serwonapęd został załączony za pomocą bitów 1, 2, 0, 3 w słowie kontrolnym (Enable Voltage, Quick Stop, Switch On, Enable Operation) oraz czy serwonapęd potwierdził to, za pomocą bitów statusowych 0, 1, 2, 5 (Ready to Switch On, Switched On, Operation Enabled, Quick Stop),
- czy serwonapęd nie zgłosił błędu za pomocą bitu 3 w słowie statusowym (Fault),
- czy serwonapęd nie zgłosił błędu na skutek wprowadzenia niedozwolonych nastaw (przykładowo zerowy moment siły); można to sprawdzić za pomocą bitu 12 w słowie statusowym (Target Value Ignored),
- czy w serwonapędzie nie wystąpił błąd najechania na krańcówki sprawdzić bit 11 w słowie statusowym (Internal Limit Active),
- czy sterownik ASTRAADA One komunikuje się za pomocą sieci EtherCAT z serwonapędem ASTRAADA SRV i może nim sterować,
- czy serwonapęd nie jest jeszcze w trakcie realizacji ruchu podczas wydawania nowego polecenia w trybie sterowania pozycją (można też załączyć bit 5 w słowie kontrolnym w celu natychmiastowego wywołania nowej komendy).
- Sprawdzić, czy kabel komunikacyjny EtherCAT został wpięty do górnego gniazda we wzmacniaczu (złącze CN3).